Empowering Zero Emission: Duo-Plasmaline Driving Performance and Efficiency of Fuel Cells

How plasma technology solves the challenge of performance degradation in fuel cells

Fuel cells based on ionomer membranes are very important in applications such as zero emissions vehicles. The major disadvantage of commercially available membranes, e.g., Nafion, in direct methanol fuel cells (DMFC) is their relatively large permeability for methanol, which leads to a drastic degradation of the efficiency of the fuel cell. Figure 8 shows the schematic of a DMFC. Plasma surface treatment of such membranes can reduce their permeability to methanol. In addition, the bond strength of the membrane to the catalyst can be significantly improved by plasma surface treatment.

 

Figure 1: Schematic of a direct methanol fuel cell (DMFC) [8-9].

1. Plasma technology to improve water management issues

The porous gas diffusion layer (GDL) is another important component of a fuel cell. It provides a homogeneous gas flow to the catalyst and controls the water content of the cell. In particular, the water management over a wide range of the voltage/current polarization curves is very important for the efficiency of the fuel cell. However, GDLs mostly consist of a strongly hydrophobic material which is critical for a proper water management. A partially hydrophilic GDL is a better choice because it can retain a certain amount of water in the fuel cell.

 

Figure 2: Completely hydrophobic surface of a gas diffusion layer (GDL) showing hydrophilic properties of the areas exposed to the microwave plasma (cf. water droplets adhered to these hydrophilic areas after low-pressure microwave plasma treatment) [9-10].

 

Partially hydrophilic properties of the GDL can be achieved by e.g., surface treatment of the GDL in a nitrogen plasma process. When the GDL is covered by a perforated plate, only the uncovered areas of the surface of the GDL will be modified in the plasma process. Consequently, the uncovered areas of the surface of the GDL show hydrophilic properties after plasma treatment (water droplets adhering to these areas – Figure 2), whereas the covered areas of the surface of the GDL retain their initial hydrophilic properties.

2. Proven results: Fuel cells show higher performance

The fuel cells with plasma treated GDL show significantly higher cell voltages than the reference fuel cells without plasma treated GDL. This is due to the fact that the membrane of a fuel cell without plasma treated GDL runs dry, especially at higher current densities. When using a plasma treated GDL, a certain amount of water can be retained in the cell leading to a better fuel cell performance.

Plasma technology can boost your performance in many ways. Contact us to find out how we can customize or standardize our systems for your challenges – let us help to fuel your innovations, too.

 

 

References

[1]          M. Walker, K.-M. Baumgärtner, M. Kaiser, J. Kerres, A. Ullrich, E. Räuchle, J. Appl. Polym. Sci., 1999, 74, 67-73.

[2]          M. Walker: Fuel Cells. [online] Homepage: University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP)

URL: https://www.igvp.uni-stuttgart.de/en/research/plasma-technology/processes/fuel-cells/ [status: June 16, 2021].

유사한 게시물

항목
Whitepaper Power-to-X State of Innovation – Trends and Breakthroughs in Microwave Plasma Technology
To comply with future legislation aimed at reducing pollution and given the different designs, ages and capacities of existing plants and processes, the industry needs …
더 알아보기
항목
Whitepaper Power-to-X Applications based on Microwave Heating and Microwave Plasma Technology
진행 상황은 세부 사항에 있습니다. 귀하의 프로세스 최적화에 맞춰 당사 전문가로부터 직접 마이크로웨이브 및 플라즈마 기술에 대한 최신 연구 결과와 고급 응용 개발에 대해 …
더 알아보기
항목
Power-to-X Applications MUEGGE의 대기 플라즈마 소스 비디오
APS (Atmospheric Plasma Source) 의 고유한 특성은 Power-to-X 및 관련 재생 에너지 기술과 같이 이전에는 플라즈마 기술에 사용할 수 없었던 애플리케이션에 사용할 수 있습니다. APS를 …
더 알아보기
항목
Power-to-X Applications Decontamination of Process Water containing Organic Residues using an Atmospheric Pressure Microwave Plasma Process
The thermo-catalytic reforming process (TCR® process) developed through a collaboration between MUEGGE and the Fraunhofer Institute for Environmental, Safety and Energy Technology (Fraunhofer UMSICHT) produces …
더 알아보기

Tel.: +49 (0) 6164 – 9307 – 0

Fax: +49 (0) 6164 – 9307 – 93

info@muegge.de

MUEGGE Group

Hochstrasse 4 – 6

64385 Reichelsheim

Germany

Tel.: +1-209-527-8960

Fax: +1-209-527-5385

sales@muegge-gerling.com

Gerling Applied Engineering, Inc.

P.O. Box 580816

Modesto, CA 95358-0816

USA

Tel.: +49 (0) 6164 – 9307 – 0

Fax: +49 (0) 6164 – 9307 – 93

info@muegge.de

MUEGGE Group

Hochstrasse 4 – 6

64385 Reichelsheim

Germany

Tel.: +1-209-527-8960

Fax: +1-209-527-5385

sales@muegge-gerling.com

Gerling Applied Engineering, Inc.

P.O. Box 580816

Modesto, CA 95358-0816

USA

MUEGGE
제품.

개별 프로세스를위한 특별한 솔루션이 필요하십니까?