3 Good Reasons to Consider Duo-Plasmaline for your Photovoltaic Applications

How Duo-Plasmaline systems open new horizons for growing markets

Solar power remains an almost inexhaustible reserve of energy on our scale, as well as being geographically accessible, despite its intermittence. However, photovoltaic production has always had its limits. There is still room for improvement when it comes to reflection qualities of the surface coating and more economical ways of producing solar panels. Additionally, our age of fast-paced innovation demands for photovoltaic design for applications never imagined before. Due to its unique performance in surface treatment, Duo-Plasmaline is the revolutionary technology if you want your innovation to work more efficiently than ever. The three main reasons why are:

1. Reason One: Optimization of the reflection behavior

The effectiveness of light conversion into energy of silicon solar cells is linked to the minimization of reflection losses and surface recombination. Thin plasma-polymerized SiN films are used to improve both properties i.e., the reflection behavior by adjusting the refractive index of the anti-reflection coating and the surface properties to avoid recombination at the surface.

 

Muegge’s Duo-Plasmaline technology acts superior in creating a homogeneous plasma. Combined with a Plasma Array, it is suitable for continuous and batch processes. Both Duo-Plasmaline and Plasma Array provide highly efficient surface treatment of even thermally sensitive materials due to high radical densities at lowest ion energy of the non-equilibrium microwave plasma at low-pressure.

 

 

Figure 1: Plasma array consisting of six Duo-Plasmalines integrated into a process chamber for e.g., low-pressure plasma deposition of thin films used in the production of solar cells (courtesy of Meyer Burger Germany)
 
 

These properties are critical for SiN films used in photovoltaics: hardness and chemical resistivity are crucial properties of these layers. For this reason, SiN can be applied both as an insulator and as barrier-material for many industrial applications.

“This highly stable plasma process really opens doors for a more economic production, but also for a whole new set of possibilities in designing photovoltaic applications for growing markets.”

2. Reason Two: Making your large-scale production more profitable

Photovoltaic devices will be more profitable if their price can be significantly reduced, e.g., by large-scale production. Thin film solar cells are of particular interest in large-scale production. Glass plates are state-of-the-art substrates for thin film solar modules made of e.g., copper-indium-gallium di-selenide (CIGS). They can be replaced by thin metal foils to reduce both weight and material costs. The heavy glass substrate and the glass covering can be substituted by a systems of thin polymer films deposited in a low-pressure microwave plasma process on the metal plate and on the optical layers on top of the CIGS solar modules.

3. Reason Three: Entering new markets with more flexibility

Standard CIGS solar modules consist of monolithically connected solar cells. Therefore, the metal foil has to be insulated. In addition, diffusion of material impurities and contamination from the metal foil into the CIGS must be prevented by a diffusion barrier. The advantage of using thin metal foils as substrate material is the flexibility of the modules which makes them suitable for mobile applications and wearables.

Figure 2: Monolithically connected copper-indium-gallium di-selenide (CIGS) solar modules on a flexible metal foil with a plasma-deposited diffusion layer in between [5-7].

4. Beyond limits: Plasma process empowering your innovations

Plasma processes for deposition of thin polymer films acting as diffusion barriers enable new technologies for economical production of flexible photovoltaic modules. Furthermore, plasma processes can be used for deposition of thin film amorphous silicon (a-Si) solar cells and for microcrystalline silicon (µc-Si) solar cells, thus introducing important new markets for plasma technology.

 

Want to know how our plasma systems can help your ideas grow into new products and new markets?
 
Contact us and we will bring power to your projects.
 

References

[1]          H. Schlemm, A. Mai, S. Roth, D. Roth, K.-M. Baumgärtner, H. Mügge, Surf. Coat. Technol., 2003, 174-175, 208-211.

 

[2]          M. Troia, M. Walker: Diffusion Barrier Layers. [online] Homepage: University of Stuttgart, Institute of Interfacial Process Engineering and Plasma Technology (IGVP)

URL: https://www.igvp.uni-stuttgart.de/en/research/plasma-technology/processes/diffusion-barrier-layers/ [status: June 16, 2021].

Related

Article
Whitepaper Power-to-X State of Innovation – Trends and Breakthroughs in Microwave Plasma Technology
To comply with future legislation aimed at reducing pollution and given the different designs, ages and capacities of existing plants and processes, the industry needs …
Learn more
Article
Whitepaper Power-to-X Applications based on Microwave Heating and Microwave Plasma Technology
Progress is in the details. Find out about the latest findings and advanced application developments in microwave and plasma technology - directly from our experts, …
Learn more
Article
Power-to-X Applications Video of MUEGGE’s Atmospheric Plasma Source
The unique properties of the Atmospheric Plasma Source (APS) can be used for applications formerly not available for plasma technology, like Power-to-X and related renewable …
Learn more
Article
Power-to-X Applications Decontamination of Process Water containing Organic Residues using an Atmospheric Pressure Microwave Plasma Process
The thermo-catalytic reforming process (TCR® process) developed through a collaboration between MUEGGE and the Fraunhofer Institute for Environmental, Safety and Energy Technology (Fraunhofer UMSICHT) produces …
Learn more

Tel.: +49 (0) 6164 – 9307 – 0

Fax: +49 (0) 6164 – 9307 – 93

info@muegge.de

MUEGGE Group

Hochstrasse 4 – 6

64385 Reichelsheim

Germany

Tel.: +1-209-527-8960

Fax: +1-209-527-5385

sales@muegge-gerling.com

Gerling Applied Engineering, Inc.

P.O. Box 580816

Modesto, CA 95358-0816

USA

Tel.: +49 (0) 6164 – 9307 – 0

Fax: +49 (0) 6164 – 9307 – 93

info@muegge.de

MUEGGE Group

Hochstrasse 4 – 6

64385 Reichelsheim

Germany

Tel.: +1-209-527-8960

Fax: +1-209-527-5385

sales@muegge-gerling.com

Gerling Applied Engineering, Inc.

P.O. Box 580816

Modesto, CA 95358-0816

USA

MUEGGE
Products.

You need a special solution for your industrial process?